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Abstract

In dealing with large datasets the reduced support vector machine (RSVM)

was proposed for the practical objective to overcome the computational diffi-

culties as well as to reduce the model complexity.
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In this article, we study the RSVM from the viewpoint of robust design for

model building and consider the nonlinear separating surface as a mixture of

kernels. The RSVM uses a reduced model representation instead of a full one.

Our main results center on two major themes. One is on the robustness of the

random subset mixture model. The robustness is judged by a few criteria: (1)

model variation measure, (2) model bias (deviation) between the reduced model

and the full model and (3) test power in distinguishing the reduced model from

the full one. The other is on the spectral analysis of the reduced kernel. We

compare the eigen-structures of the full kernel matrix and the approximation

kernel matrix. The approximation kernels are generated by uniform random

subsets. The small discrepancies between them indicate that the approximation

kernels can retain most of the relevant information for learning tasks in the full

kernel. We focus on some statistical theory of the reduced set method mainly

in the context of the RSVM. The use of a uniform random subset is not limited

to the RSVM. This approach can act as a supplemental-algorithm on top of

a basic optimization algorithm, wherein the actual optimization takes place

on the subset-approximated data. The statistical properties discussed in this

paper are still valid.

Key words and phrases: canonical angles, kernel methods, maximinity, min-

imaxity, model complexity, reduced set, Monte-Carlo sampling, Nyström ap-

proximation, spectral analysis, support vector machines, uniform design, uni-

form random subset.

1 Introduction

In recent years support vector machines (SVMs) with linear or nonlinear kernels

[4, 8, 40] have become one of the most promising learning algorithms for classification

as well as for regression [11, 26, 27, 37, 18], which are two fundamental tasks in
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data mining [45]. Via the use of kernel mapping, variants of SVM have successfully

incorporated effective and flexible nonlinear models. There are some major difficulties

that confront large data problems due to dealing with a fully dense nonlinear kernel

matrix. To overcome computational difficulties some authors have proposed low-

rank approximation to the full kernel matrix [35, 44]. As an alternative, Lee and

Mangasarian have proposed the method of reduced support vector machine (RSVM)

[20]. The key ideas of the RSVM are as follows. Prior to training, it randomly selects

a portion of dataset as to generate a thin rectangular kernel matrix. Then it uses

this much smaller rectangular kernel matrix to replace the full kernel matrix in the

nonlinear SVM formulation. Computational time, as well as memory usage, is much

less demanding for RSVM than that for a conventional SVM using the full kernel

matrix. As a result, the RSVM also simplifies the characterization of the nonlinear

separating surface. The numerical comparisons in [20, 18] and later in Section 3

show that the RSVM though has higher training errors than the conventional SVM,

it has comparable test errors, sometimes even slightly smaller. In other words, the

RSVM has comparable, or sometimes slightly better, generalization ability. This

phenomenon can be interpreted by the Minimum Description Length [31] as well as

the Occam’s razor [33].

The technique of using a reduced kernel matrix has been successfully applied to

other kernel-based learning algorithms, such as proximal support vector machine [14],

ε-smooth support vector regression (ε-SSVR) [18], Lagrangian support vector machine

[28], least-square support vector machine [38, 39, 23]. Also, there were experimental

studies on RSVM [23, 18] that showed the computing-time efficiency of RSVM. The

RSVM results reported in [23] can be further improved if a stratified random subset

was drawn first and then the one-against-one binary problems were solved using

corresponding support vectors in this stratified subset. Since the RSVM has reduced

the model complexity by using a much smaller rectangular kernel matrix, we suggest

3



using a larger weight parameter to enforce better data fidelity. The numerical test

in [20] on the Adult dataset [3] shows that the sample standard deviation of test set

correctness for 50 replicate runs is less than 0.001. The replicate runs are based on

50 randomly chosen (with replacement) different reduced sets with the size of 1% of

original dataset. In fact, the smallness of the sample standard deviation can be used

as guidance for determining the size of the reduced set.

In this article we study the RSVM from the viewpoint of robust design for model

building and consider the nonlinear separating surface as a mixture of kernels. The

RSVM uses a reduced model representation instead of a full model. Our main results

center on two major themes. One is on the robustness of the random subset mixture

model and the other is on the spectral analysis of the reduced kernel. The robustness

is judged by a few criteria. (1) Consider a class of mixture models built via certain

Monte-Carlo sampling schemes. Among this class the RSVM mixture model via uni-

form random sampling minimizes a model variation measure. This uniform random

subset selection in RSVM also has a link to the popular uniform design, which is a

space filling design [12]. The space filling design is known to be robust against the

worst possible scenario and can reduce the model bias (deviation). (2) The RSVM

mixture model via uniform random sampling minimizes the maximal model bias (de-

viation) between the reduced model and the full model. (3) It also maximizes the

minimal test power in distinguishing the reduced model from the full model. As for

the spectral analysis we will compare the eigen-structures of the full kernel matrix and

the approximation kernel where the approximation kernels are generated by uniform

random subsets. The small discrepancies between them can provide an evidence that

the approximation kernels can retain most of the relevant information for learning

tasks in the full kernel.

We briefly outline the contents of this article. Section 2 provides the main ideas

and formulation for RSVM. Section 3 discusses the reduced set mixture models with
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kernel bases drawn from a Monte-Carlo sampling scheme. The integrated variance of

the Monte-Carlo sampling scheme is used to judge the model variation. The uniform

random sampling is the optimality scheme among a certain class. Section 4 gives

a comparison study on the spectral analysis of reduced kernels by uniform random

subset and full kernel matrix. Section 5 further provides the uniform randomness

certain minimaxity and maximinity properties. We discuss the applicability of the

uniform random subset method to other kernel-based algorithms in Section 6. Section

7 concludes the articles. All proofs are placed in the Appendix.

A word about our notation and background material is given below. All vectors

are column vectors unless otherwise specified or transposed to a row vector by a

prime superscript ′. For a vector x = (x1, . . . , xn) ∈ Rn, the plus function x+ is

defined componentwise as (x+)j = max {0, xj}. The scalar (inner) product of two

vectors x, z ∈ Rn will be denoted by x′z and the p-norm of x will be denoted by ‖x‖p.

For a matrix A ∈ Rm×n, Ai is the ith row of A. A column vector of ones of arbitrary

dimension will be denoted by 1. For A ∈ Rm×n and B ∈ Rn×l, the kernel K(A,B)

maps Rm×n × Rn×l into Rm×l. In particular, if x and y are column vectors in Rn

then, K(x′, y) is a real number, K(A, x) is a column vector in Rm and K(A,A′) is an

m×m matrix.

2 RSVM formulation

Consider the problem of classifying points into two classes, A− and A+. We are given

a training dataset {(xi, yi)}m
i=1, where xi ∈ X ⊂ Rn is an input vector and yi ∈ {−1, 1}

is a class label, indicating one of the two classes, A− and A+, to which the input point

belongs. We represent these data points by an m×n matrix A, where the ith row Ai

corresponds to the ith input data point. We use alternately Ai (a row vector) and xi (a

column vector) for the same ith data point depending on the convenience. We use an
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m×m diagonal matrix D, Dii = yi, to specify the corresponding class membership of

each input point. The main goal of the classification problem is to find a classifier that

can predict correctly the unseen class labels for new data inputs. It can be achieved

by constructing a linear or nonlinear separating surface, f(x) = 0, which is implicitly

defined by a kernel function. We classify a test point x to A+ if f(x) ≥ 0, otherwise,

to A−. We will focus on nonlinear case in this paper. In conventional SVM as well

as many kernel-based learning algorithms [4, 8, 40] generating a nonlinear separating

surface has to deal with a fully dense kernel matrix with the size of the number of

training examples. When training a nonlinear SVM on a massive dataset, the huge

and dense full kernel matrix will lead to some computational difficulties below:

(P1) the size of the mathematical programming problem;

(P2) the dependence of the nonlinear separating surface on most of the dataset, which

creates unwieldy storage problems that hinder the use of nonlinear kernels for

massive datasets.

To avoid these difficulties and to cut down model complexity, the RSVM uses a very

small random subset of size m̃, where m̃ ¿ m, for building up the separating surface

which plays a similar role of support vectors. We denote this random subset by Ã,

which is used to generate a much smaller rectangular matrix K(A, Ã′) ∈ Rm×m̃. The

reduced kernel matrix is served to replace the full kernel matrix K(A,A′) to cut prob-

lem size, computing time and memory usage as well as to simplify the characterization

of the nonlinear separating surface.

We now briefly describe the RSVM formulation, which is derived from the gener-

alized support vector machine (GSVM) [25] and the smooth support vector machine

(SSVM) [21]. The RSVM starts from a standard 2-norm soft margin SVM, and next

it appends the term γ2/2 to the objective function to be minimized and results in the
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following minimization problem:

min
(u,γ,ε)

C

2
‖ε‖2

2 +
1

2
(‖u‖2

2 + γ2)

subject to D{K(A,A′)Du− 1γ} ≥ 1− ε

ε ≥ 0,

where C is a positive number for balancing training error and the regularization

term in the objective function. We call it as weight parameter. We note that the

nonnegative constraint ε ≥ 0 can be removed because of the term ‖ε‖2
2 in the objective

function of the minimization problem. If we let v = Du, then ‖v‖2
2 = ‖u‖2

2. Thus,

the problem above is equivalent to

min
(v,γ,ε)

C

2
‖ε‖2

2 +
1

2
(‖v‖2

2 + γ2) (1)

subject to D{K(A,A′)v − 1γ} ≥ 1− ε. (2)

At a solution, ε takes the form ε = (1 − D{K(A,A′)v − 1γ})+. Next we convert

the problem given by (1) and (2) into an equivalent SVM, which is an unconstrained

optimization problem as follows:

min
(v,γ)∈Rm+1

C

2
‖(1−D{K(A,A′)v − 1γ})+‖2

2 +
1

2
(‖v‖2

2 + γ2). (3)

Instead of using the full kernel matrix K(A,A′), we replace it with a reduced kernel

matrix K(A, Ã′), where Ã consists of m̃ random columns from A, and the problem

becomes

min
(ṽ,γ)∈Rm̃+1

C

2
‖(1−D{K(A, Ã′)ṽ − 1γ})+‖2

2 +
1

2
(‖ṽ‖2

2 + γ2). (4)

In solving the RSVM (4), a smooth approximation p(z, α) to the plus function is used

[21]. The p function defined below can provide a very accurate approximation. The

RSVM then solves the following approximate unconstrained minimization problem
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for a general kernel K(A, Ã′):

min
(ṽ,γ)∈Rm̃+1

C

2
‖p(1−D{K(A, Ã′)ṽ − 1γ}, α)‖2

2 +
1

2
(‖ṽ‖2

2 + γ2), (5)

where p(z, α) is defined componentwise by

{the jth component of p(z, α)} = zj +
1

α
log(1 + exp{−αzj}), α > 0, j = 1, . . . , m.

(6)

The function p(z, α) converges to (z)+ as α goes to infinity. Since the RSVM has

already reduced the model complexity via using a much smaller rectangular kernel

matrix (corresponding to using less support vectors in constructing decision bound-

aries), we will suggest to use a larger weight parameter C in RSVM than in a conven-

tional SVM. The solution to the minimization problem (4) or (5) leads to a nonlinear

separating surface of the form

m̃∑

i=1

ṽiK(Ãi, x)− γ = 0. (7)

In fact, the reduced set Ã is not necessary to be a subset of training set [17]. The

minimization problem (5) retains the strong convexity and differentiability properties

in the space, Rm̃+1, of (ṽ, γ) for any arbitrary rectangular kernel. Hence we can apply

the Newton-Armijo method [21] directly to solve (5) and the existence and uniqueness

of the optimal solution are also guaranteed. Moreover, the computational complexity

of solving problem (5) by the Newton-Armijo method is O(m̃3) while solving the

nonlinear SSVM with the full square kernel is O(m3) [21]. Typically, m̃ ¿ m. The

numerical test in [20] on the Adult dataset [3] shows that sample standard deviation

of test set correctness for 50 replicate runs using Ã ∈ R326×123 out of A ∈ R32562×123 is

less than 0.001. In fact, the smallness of the standard error can be used as a guidance

to determining m̃.

In summary, the RSVM can be split into two parts. First, it selects a small ran-

dom subset {K(Ã1, ·), K(Ã2, ·), · · · , K(Ãm̃, ·)} from the full-data bases {K(Ai, ·)}m
i=1
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for building the separating surface prior to training. While the conventional SVMs

use a set of support vectors which are determined after training for building the sur-

face. When projected onto the separating surface, the full-data bases are likely highly

correlated with possibly heavy overlaps, which makes room for model reduction. Sec-

ondly, the RSVM determines the best coefficients of the selected kernel functions by

solving the unconstrained minimization problem (4) or (5) using the entire dataset

so that the surface will adapt to the whole data. Hence, even the RSVM uses only a

small portion of kernel bases, it can still keep most of the relevant pattern informa-

tion given by the entire training set. We will discuss this issue again from a low-rank

approximation point of view in Section 4.

3 Reduced set mixture models and Monte-Carlo

sampling for kernel bases

The nonlinear SVM uses a full-kernel representation for the discriminant function:

f(x) =
m∑

i=1

viK(Ai, x)− γ. (8)

It is a linear combination of basis functions, {1} ∪ {K(Ai, ·)}m
i=1. The coefficient vi

is determined by solving a quadratic programming problem and the data points with

corresponding nonzero coefficient vi are called support vectors. It is often desirable to

have less number of support vectors. The reduced set approach cuts down the model

complexity and fits a reduced model:

f(x) =
m̃∑

i=1

ṽiK(Ãi, x)− γ. (9)

We call {K(Ai, ·)}m
i=1 the set of full-data bases and {K(Ãi, ·)}m̃

i=1 a reduced set.

Concerning the choice of a reduced set prior to the training process, a simple

way is the uniform random subset used in the RSVM [20]. It randomly selects a
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small portion of basis functions from the full set to generate the reduced model, while

it fits the entire dataset. Each candidate basis in the full set has equal chance of

being selected. This uniform random selection is simple and straightforward without

resorting to any search algorithm for optimal bases. There have been experimental

results showing its ability for modeling classification surfaces [14, 20, 23] as well as

regression surfaces [18]. In this article, we will mainly focus on its statistical properties

and theory.

Before proceed any further, we define some more notations and state some condi-

tions necessary for later statistical analysis and theory.

• Definition 1 (Training design for inputs) Let ξT be a probability measure

on input space X ⊂ Rn. Assume that training inputs follow this probability

distribution ξT . In statistical term, ξT is called a training design for input

measurements.

The training inputs xi, for i = 1, . . . , m, are assumed i.i.d. realizations from ξT .

After observing the training inputs, a discrete empirical version of the training

design is given by ξTm(x) = m−1 ∑m
i=1 δ(x−xi), where δ(·) puts probability mass

one at zero. In this article we do not distinguish between the generic training

design and its empirical version, and use a unified notation ξT for both unless

otherwise specified.

• Let H denote the reproducing kernel Hilbert space generated by the kernel

K(x′, z). Let D := {K(·, z)}z∈X denote a dictionary for H.

• Definition 2 (Sampling design for bases selection) Let ξ be a probability

measure on X . As will be seen later in (12), ξ is used as a Monte-Carlo sampling

scheme for kernel bases from the dictionary D to construct the discriminant

surface. We call this probability measure ξ a sampling design for bases selection.
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• Assume ξT and ξ are two equivalent measures, indicated by ξT ≡ ξ.1 Denote

the Radon-Nikodym derivative of ξ with respect to ξT by p(x) := dξ(x)/dξT (x).

Let P be the collection of all such probability measures:

P := {ξ : probability measure on X satisfying ξ ≡ ξT}. (10)

Again, we will not distinguish between the generic sampling design and its

empirical version and use a unified notation ξ.

• For convenience, in Theorem 1 and Corollary 1, a Gaussian kernel

Kσ(x′, z) = (2πσ2)−n/2 exp{−||x− z||2/(2σ2)}

is assumed. We often suppress the subscript σ in Kσ and let K(x − z) :=

Kσ(x′, z). The value of K(x − z) represents the inner product of resulting

vectors of x and z in the feature space after a nonlinear mapping implicated

and defined by the Gaussian kernel. We can also interpret it as a measure

of similarity between x and z. In other words, K(Ai, A) records the similarity

between Ai and all training inputs. In particular, if we use the Gaussian kernel in

the RSVM, we can interpret the RSVM as an instance-based learning algorithms

[31]. The reduced kernel matrix arranges only the similarity between reduced set

and the entire training dataset. In contrast to the k-nearest neighbor algorithm

using the simple voting strategy, the RSVM uses the weighted voting strategy,

where weights and threshold are determined by a training procedure. That is,

if the weighted sum, ṽ′K(Ã, x), is greater than a threshold, γ, the point x is

classified as a positive example.

1That is, ξ is absolutely continuous with respect to ξT and conversely, ξT is also absolutely

continuous with respect to ξ. The equivalence of two measures insures the existence of the Radon-

Nikodym derivatives dξ(x)/dξT (x) and dξT (x)/dξ(x).
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Theorem 1 and Corollary 1 can easily extend to translation-type kernels, i.e.,

kernels of the form K(x′, z) = K(x− z).

As seen in (8) and (9), the underlying discriminant function f(x) is modeled as

a mixture of kernels plus an offset term. We assume the following modeling for the

discriminant function via the mixing distribution ξT :

f(x) =
∫

K(x′, z)v(z)dξT (z)− γ, (11)

where v(z) is a coefficient function assumed to satisfy
∫

v2(z)dξT (z) < ∞. By re-

expressing the above mixture via an arbitrary mixing distribution ξ ∈ P , we have

f(x) =
∫

K(x′, z)v(z)
dξT (z)

dξ(z)
dξ(z)− γ :=

∫
f(x, z) dξ(z)− γ, (12)

where f(x, Z) := K(x, Z)v(Z)/p(Z) with Z ∈ X following a probability distribution

ξ. Bases, sampled via the random mechanism K(x, Z) with Z ∼ ξ, are used to build a

reduced model. The sum of certain realizations of f(x, Z) is a Monte-Carlo sampling

approximation to the presumably true underlying discriminant function f(x) in (11).

A natural and simple way to evaluate such a Monte-Carlo approximation is through

its integrated variance [24]:

∫
V arξ{f(x, Z)}dx =

∫ ∫
K2(x′, z)v2(z)/p2(z) dξ(z)dx−

∫
(f(x) + γ)2dx. (13)

Thus the above quantity is used to assess the model robustness. The smaller it is,

the better stability (less variability) the model built from ξ will retain. Therefore,

we aim to find a good sampling design ξ with as small integrated model variance as

possible. As the quantity
∫
(f(x) + γ)2dx does not involve ξ, we may drop it from

the expression (13) in the minimization step and use the following measure of model

variation.
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Definition 3 (Model variation measure) We use the following measure to assess

the model variation due to the sampling design ξ:

V (ξ) :=
∫ ∫

K2(x′, z)v2(z)/p2(z) dξ(z)dx

=
∫ ∫

K2(x′, z)v2(z)/p(z) dξT (z)dx. (14)

(If K2(x′, z)v2(z)/p(z) is not integrable, set V (ξ) = ∞.)

By Lemma 1 in the Appendix, it is easy to get the optimal design which minimizes

V (ξ) over the set P . The resulting optimal sampling design has its pdf with respect

to ξT given by

dξopt/dξT = p(z) ∝ |v(z)|
(∫

K2(x′, z)dx
)1/2

∝ |v(z)|,

if K(x′, z) is a translation-type kernel, e.g., the Gaussian kernel case.2

Theorem 1 (Optimal sampling design) Assume that the kernel employed is of

translation-type. The ideal optimal sampling design for bases selection is given by ξopt

with pdf dξopt(z)/dξT (z) = p(z) ∝ |v(z)|.

The coefficient function v(z) is not known and has yet to be estimated in the

training process. Here we use a constant as a reference function to replace |v(z)|
and the resulting p(z) is simply a uniform pdf with respect to ξT . There are two

main reasons of using a constant reference function for |v(z)|. One is to indicate no

prior preference or information on v(z) prior to training. The other is to reflect the

intrinsic mechanism in SVM that tends to minimize the 2-norm,
∫

v2(z)dξT (z), of

|v(z)|. For an arbitrary fixed scale
∫ |v(z)|dξT (z) = c, say c = 1, the 2-norm of |v(z)|

is minimized when |v(z)| is a constant function.

2For Gaussian kernel on a compact set X , a constant
∫

K2(x′, z)dx is not true. However, for z

away from the boundary, the function
∫

K2(x′, z)dx is near a constant. For z near the boundary,

some boundary correction should be made prior to forming the mixture model and also prior to

training. See Appendix for more detailed discussion.
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Corollary 1 Prior to training process, a constant function is used as a reference for

the coefficient function |v(z)|. Then the optimal sampling design for bases selection

is given by p(z) = constant, that is, ξopt = ξT . This justifies the uniform sampling

scheme (on training data) used in the original RSVM of Lee and Mangasarian [20].

Remark 1 The result, p(z) ∝ |v(z)|, in Theorem 1 says that we should sample more

kernel bases at points with large coefficients. These large coefficient points are poten-

tial support vectors. However, prior to training, we do not know where these potential

support vectors are. Though sequential adaptive algorithms for optimal bases selection

are available [35, 19, 5], they are more time-consuming and require some search al-

gorithms, which are not the scope of this article. Here we simply point out that there

is a simple and economic alternative, namely, the uniform random subset approach.

Though, a posteriori this uniform random sampling scheme is not the optimal one,

the true a posteriori optimal one is p(z) ∝ |v(z)|. However, as prior to training,

we do not have information on which data points have better potential to be support

vectors than others.

Another interpretation for the constant |v(z)| is as follows. Suppose that the train-

ing inputs come from a mixture of two distributions. With probability π+ the training

inputs are from the positive group having pdf f+(x) and with probability π− = 1− π+

the training inputs are from the negative group having pdf f−(x). The Rosenblatt-

Parzen [34, 32] kernel estimators for f+(x) and f−(x) are

f̂+(x) =
1

n+

∑

i∈A+

K(Ai, x), f̂−(x) =
1

n−

∑

i∈A−

K(Ai, x).

The prior probabilities of group assignment can be estimated by frequency counts:

π̂+ =
n+

n
, π̂− =

n−
n

.

An ad hoc decision boundary can be given by (comparing two pdfs, adding an offset
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term to balance what might be biased)

π̂+f̂+(x)− π̂−f̂−(x)− γ = 0,

which corresponds to a constant |v(z)|.

Remark 2 A friendly reminder to readers who are interested in implementing the

reduced set approach on top of their own kernel-based learning algorithms is that a

stratified random sampling should be taken, especially when the numbers of classes

are quite a few. That is, the uniform random subset should be done within each

class and then be combined together. The stratified sampling is a “must” for multiple

classification in order to reduce the variance due to Monte-Carlo sampling, especially

for problems with large numbers of classes [24].

This random subset approach can drastically cut down the model complexity,

while the sampling design helps to guide the bases selection in terms of minimal

model variation (14). However, we remind the readers that the quantity V (ξ) does

not account for variance incurred in parameter estimation, but only for the model

variation caused by bases sampling. The resulting optimal sampling design in Corol-

lary 1 is a uniform design with respect to ξT , which seeks basis points uniformly

distributed over training points. The use of uniform design has been popular since

1980. See articles [12] and [13] for a nice survey of theory and application on uniform

design. The uniform design is a space filling design and it seeks to obtain maximal

model robustness.

In the original RSVM article [20], it has experimental comparison of the RSVM

vs. the full-kernel SSVM. As a supplement, here we add some further comparison

with the LIBSVM [6]. We run numerical tests on nine datasets (five for classification

and four for regression) which are available on [3, 9, 10]. Results in Table 1 below

show that models generated by the RSVM consistently have slightly smaller testing
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errors. All training and testing errors are the ten-fold cross-validation average. The

parameters used in all support vector machines are determined by a 2-dimensional

mesh tuning procedure.
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RSVM SSVM LIBSVM

Dataset Train Test CPU Train Test CPU Train Test CPU
Error Error Sec. Error Error Sec. Error Error Sec.

Ionosphere 0.0369 0.0411 0.313 0.0136 0.0471 2.578 0.0041 0.0471 1.016

(351x34) Reduced set size: 36 Number of SVs: 183

Pima 0.2276 0.2211 0.433 0.2218 0.2237 199.166 0.2231 0.2237 1.688

(768x8) Reduced set size: 39 Number of SVs: 394

Image 0.0127 0.0260 3.031 0.0015 0.0294 1526.700 0.0140 0.0294 4.750

(2310x18) Reduced set size: 116 Number of SVs: 344

Mushroom 0.1049 0.1063 287.584 N/A N/A N/A 0.1047 0.1073 736.891

(8124x22) Reduced set size: 400 Number of SVs: 1757

Tree 0.0802 0.0919 672.390 N/A N/A N/A 0.0902 0.0939 507.391

(12392x18) Reduced set size: 620 Number of SVs: 2676

Comp-Activ 0.0281 0.0317 1.458 0.0293 0.0313 28.143 0.0287 0.0320 8.593

(1000x21) Reduced set size: 150 Number of SVs: 862

Kin-fh 0.1313 0.1354 1.586 0.1300 0.1357 26.161 0.1227 0.1359 7.055

(1000x32) Reduced set size: 150 Number of SVs: 654

Comp-Activ 0.0270 0.0285 87.045 N/A N/A N/A 0.0266 0.0285 436.027

(8192x21) Reduced set size: 410 Number of SVs: 6901

Kin-fh 0.1285 0.1322 62.954 N/A N/A N/A 0.1275 0.1320 699.251

(8192x32) Reduced set size: 410 Number of SVs: 5277

Table 1: Numerical comparisons of RSVM, SSVM and LIBSVM. The first five datasets

are binary classification problems and the rest are regression problems. We used Gaus-

sian kernel in all numerical tests.“N/A” indicates the result is not available because of

computational difficulties.
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In all numerical tests above, the size of reduced set is smaller than the number

of support vectors in LIBSVM. This indicates that the RSVM uses fewer number of

kernel bases to generate the discriminant function. The RSVM tends to have a sim-

pler model and need a smaller number of function evaluations when predicts a new

unlabeled data point. This is an advantage in the testing phase of learning tasks.

Although in many cases the RSVM has a slightly bigger training error, it does not

scarify any predicting accuracy on all test datasets. The basic RSVM phenomenon is

that by using a much simpler model we sacrifice a little bit of bias to reduce the vari-

ance of the predicted values, and hence may improve the overall prediction accuracy

(quote from [16]).

4 Spectral analysis of reduced kernels versus the

full kernel

In this section, we attempt to explain why the RSVM can perform well successful from

a spectral analysis point of view. In order to avoid dealing with the huge and dense

full kernel matrix in SVM, a low-rank approximation to the full kernel matrix which

is known as the Nyström approximation has been proposed in many sophisticated

ways [35, 44]. That is,

K(A,A′) ≈ K(A, Ã′)K(Ã, Ã′)−1K(Ã, A′) = K̃. (15)

We denote the Nyström approximation of K(A,A′) by K̃ in the rest of this article.

Applying this approximation, for a vector v ∈ Rm,

K(A,A′)v ≈ K(A, Ã′)K(Ã, Ã′)−1K(Ã, A′)v = K(A, Ã′)ṽ, (16)

where ṽ = K(Ã, Ã)−1K(Ã, A′)v. In the RSVM, ṽ is directly determined by fitting the

entire dataset and the Nyström approximation is generated by the uniform random

18



Dataset & Size Largest Eigen-v. Largest Eigen-v. Max-diff of Rel-diff
(Train, Reduced) of K(A,A′) of K̃ Eigenvalue of Trace

Ionosphere 162.649 162.096 1.0315 0.210
(351,36)

Pima 606.547 606.536 0.387 0.0026
(768, 39)

Image 1303.2 1303.1 1.496 0.0210
(2310,116)

Comp-Act(1000) 961.364 961.359 0.040 0.00034
(1000, 150)

Kin-fh(1000) 953.160 953.154 0.008 0.00087
(1000, 150)

Table 2: Spectral comparison of full kernel K(A,A′) and the Nyström approximation

K̃. The relative difference of the trace is defined as trace(K−K̃)

trace(K)
.

subset.

We measure the discrepancy between the full kernel and the uniform-random-

subset Nyström approximation via a few quantities like the maximum difference of

eigenvalues and the relative difference of the trace of full kernel K(A,A′) and K̃ (de-

noted as Max-diff of Eigenvalue and Rel-diff of Trace, respectively in Table 2) on five

real datasets, which have manageable sizes of full kernel eigenvalues and eigenvec-

tors. We summarize the results in Table 2. In order to have a better understanding

of the differences of their spectral behaviors, we plot four figures for each dataset.

Each figure has four subfigures. In subfigure (a), it shows the difference between

each pair of eigenvalues. In subfigure (b) and (c), we plot the eigenvalues of the

full and the approximate kernels. We split them into two parts and skip the largest

eigenvalue because the different scales of eigenvalues. We try to provide more details

about them. In subfigure (d), we plot the squared root of eigenvalue of the full kernel
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times the two norm of the difference of each pair of eigenvectors. That is, we plot

(k,
√

λk · ‖ek − ẽk‖2), where λk is the kth eigenvalue of K(A,A′) and ek is the corre-

sponding eigenvector. ẽk denotes the kth eigenvector of the Nyström approximation

by uniform random subset. Note that
√

λk · ‖ek − ẽk‖2 =
√

2λk(1− cos θk), where θk

is the angle between ek and ẽk. These angles {θ1, θ2, θ3, . . .} are known as the leading

canonical angles between K and K̃ [7].

We find from these figures that the quality of the approximation will depend on

the rate of decay of the eigenvalues of the full kernel matrix. Also, the numerical sim-

ulations indicate that the reduced kernel generated by the uniform random selection

scheme retains most of the relevant information. These observations might give an

explanation why the RSVM can provide a good discriminant and regression function

estimation in supervised learning tasks.
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Figure 1: The spectral analysis of Ionosphere dataset
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Figure 2: The spectral analysis of Pima dataset
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Figure 3: The spectral analysis of Image dataset
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Figure 4: The spectral analysis of CompActiv (1000) dataset
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Figure 5: The spectral analysis of Kin-fh (1000) dataset
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5 Minimaxity and maximinity

In this section we will show that the uniform sampling design in Corollary 1 possesses

some other robustness properties, namely, the minimaxity and the maximinity. The

ideas are taken from robust designs [41, 42, 43, 22, 1, 2] and customized into the

context of the RSVM (4). Recall the full and reduced models:

full model : f(x) =
m∑

i=1

viK(Ai, x)− γ, (17)

reduced model : f(x) =
m̃∑

i=1

ṽiK(Ãi, x)− γ. (18)

Using kernel K corresponds to mapping the data into a feature Hilbert space with a

map: Φ : X → U .3 In the feature space U , the normal vector of the SVM separating

hyperplane, w′u−γ = 0, can be expanded in terms of support vectors. The full model

has the following full expansion for the normal vector

full pre-image expansion : w =
m∑

i=1

viΦ(Ai), (19)

while the reduced model has the reduced expansion

reduced pre-image expansion : w =
m̃∑

i=1

ṽiΦ(Ãi). (20)

Expansions given by (19) and (20) are called pre-image expansions [36]. We now try

to measure the error induced by the reduced-set approximation. For a given vector

v ∈ Rm, we consider the minimization problem

min
ṽ∈Rm̃

‖
m∑

i=1

viK(Ai, x)−
m̃∑

i=1

ṽiK(Ãi, x)‖2
H(dξT ). (21)

3Here we assume the kernel spectral is done with respect to the measure ξT , i.e., K(x, z) =
∑

i λiφi(x)φi(z) with
∫

φ2
i (x)dξT = 1 and

∫
φi(x)φj(x)dξT = 0 for i 6= j. The corresponding Hilbert

space is denoted by H(dξT ).
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By reproducing property,

‖
m∑

i=1

viK(Ai, x)−
m̃∑

i=1

ṽiK(Ãi, x)‖2
H(dξT ) = v′K(A,A′)v − 2v′K(A, Ã′)ṽ + ṽ′K(Ã, Ã′)ṽ.

Then the vector ṽ∗ = K(Ã, Ã′)−1K(Ã, A′)v ∈ Rm̃ solves problem (21). Hence, the

errors induced by the reduced-set approximation (18) and (20) are given respectively

by

min
ṽ∈Rm̃

‖
m∑

i=1

viK(Ai, x)−
m̃∑

i=1

ṽiK(Ãi, x)‖2
H(dξT ) = v′(K − K̃)v,

where K = K(A,A′) and K̃ is defined as in (15), and similarly

min
ṽ∈Rm̃

‖
m∑

i=1

viΦ(Ai)−
m̃∑

i=1

ṽiΦ(Ãi)‖2
U = v′(K − K̃)v.

They lead to the same quantity.

Below we define some more notations. All the ξ’s are assumed in the class P given

by (10). The full data A is assumed fixed and the reduced set size m̃ is also assumed

fixed.

• F(A) := linear span{K(Ai, ·)}m
i=1, which is the full model given training inputs

A. R(Ã) := linear span{K(Ãi, ·)}m̃
i=1, which is a reduced model by the subset

Ã ⊂ A. We will suppress the set notation and simply use F and R, if no

confusion.

• K̃ξ :=
∫
X m̃ K(A, Ã′)K(Ã, Ã′)−1K(Ã, A′)dξ(Ã), where dξ(Ã) = dξ(Ã1) · · · dξ(Ãm̃).

K̃ξ is an m×m matrix representing the average effect of low-rank approxima-

tion by ξ-drawn subset of size m̃. Note that when we use K̃ξT
, it also means

a low-rank approximation by ξT -drawn subset of size m̃, but rather not means

the full kernel.

• F−
η :=

{
f(x) = v′K(A, x) ∈ F : v′(K − K̃ξT

)v ≤ η2
}
. It specifies a region in F .

After removing the average effect explained by ξ-drawn reduced model, we put
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a bound on what is left unexplained. Later, when we compare the full model

and a ξ-drawn reduced model via a certain bias measure, this bound is used to

prevent the bias measure from escaping to infinity.

• F+
η :=

{
f(x) = v′K(A, x) : v′(K − K̃ξT

)v ≥ η2
}
. It specifies a region in F .

Again, after removing the average effect explained by reduced model, what is

left unexplained has at least H(dξT )-norm of size η. Later, in a lack of fit test

(i.e., checking if the ξ-drawn reduced model provides an adequate approximation

for functions in F+
η ) also via a bias measure, the η-distance bounds the bias

measure away from zero. In other words, the η-distance guarantees a minimum

(> 0) distinguishability between the ξ-drawn reduced model and F+
η .

• For f(x) = v′K(A, x) ∈ F , define B(f, Ã) := ‖f(x)−PRf‖2
H(dξT ), where PRf(x)

is the projection of f onto R and is given by

PRf(x) = v′K(A, Ã′)K(Ã, Ã′)−1K(Ã, x).

It is derived by solving a minimization problem similar to (21). This quantity

B(f, Ã) reflects the bias measure induced by approximating f(x) = v′K(A, x)

using the reduced model by subset Ã.

• B(f, ξ) :=
∫
X m̃ B(f, Ã)dξ(Ã). It is straightforward to show that B(f, ξ) =

v′(K − K̃ξ)v. The quantity B(f, ξ) reflects an average bias measure induced

by approximating f(x) = v′K(A, x) using the ξ-drawn subset.

There are other means of defining alternative classes F−
η and F+

η and bias measure

B(f, ξ), see, for instance, [41, 42, 43, 22, 1, 2]. The minimaxity and maximinity

discussed below depend on the particular way of specifying alternative classes and

also on the definition of bias measure.
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Theorem 2 (Minimaxity) The minimax sampling design which minimizes the max-

imum bias B(f, ξ) for f ∈ F−
η is achieved by ξ = ξT , i.e.,

sup
f∈F−η

B(f, ξT ) = inf
ξ∈P

sup
f∈F−η

B(f, ξ). (22)

Equivalently, the uniform design with respect to ξT is the minimax sampling design.

Theorem 3 (Maximinity) For f ∈ F+
η , the maximin sampling design for B(f, ξ)

is achieved by ξ = ξT , i.e.,

inf
f∈F+

η

B(f, ξT ) = sup
ξ∈P

inf
f∈F+

η

B(f, ξ). (23)

Both the minimaxity and maximinity are some qualities that are robust against

the worst case scenarios. Theorem 2 says that the worst expected L2 error, intro-

duced by the approximation Kv ≈ K̃ξv, is minimized by the Nyström approximation

using uniform random subset. In judging if a reduced set approximation Kv ≈ K̃ξv

is adequate or not, Theorem 3 says that, for a least distinguishable f ∈ F+
η , the

Nyström approximation by uniform random subset has the best testing power for a

lack of fit (i.e., the best ability to detect an inadequacy for a least distinguishable

f). Theorems 2 and 3 tell us that the uniform design (a space filling design) is ro-

bust against the worst case. All the statistical properties discussed in this article,

including the optimal bases sampling design, the minimaxity and maximinity, are all

prior to training phenomena. Though the worst case scenarios or the prior to training

phenomena might not sound practical in real experiments, the spectral analysis for

real datasets in Section 4 further provides some practical view for the method. Ex-

perimental results show that the uniform random subset often provides a reasonably

well approximation to the full kernel in ordinary cases.
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6 Applicability to other kernel-based algorithms

For many other kernel-based algorithms, one has to face the same problems (P1) and

(P2) stated earlier. Several authors have suggested the use of low-rank approxima-

tions to the full kernel matrix for very large problems [20, 35, 44]. These low-rank

approximations all have used a thin rectangular matrix Kmm̃ consisting of a subset of

m̃(¿ m) columns drawn from the full kernel matrix K. Lee and Mangasarian [20],

Williams and Seeger [44] suggest to pick the subset randomly and uniformly over all

columns. Smola and Schölkopf [35] consider finding an optimal subset. Since finding

an optimal subset is a combinatorial problem involving C(m, m̃) possibilities and an

exhaustive search is too expensive to carry out, they use a probabilistic speedup algo-

rithm. The trick they use is: First draw a random subset of a fixed size and then pick

the best basis (column) from this set. The search goes on till the stopping criterion is

reached. For either Lee and Mangasarian’s, or Williams and Seeger’s random subset,

or Smola and Schölkopf’s a priori random subset at each iteration in search for an

optimal basis within, our theorems and optimality properties are valid referring to

the random mechanism of the subset selection.

For problems solved in the primal space, e.g., the proximal SVM [14], the least-

square SVM [38, 39], the kernel Fisher discriminant [30, 29], the random subset

method works by replacing the full kernel with the reduced kernel K(A, Ã′) and also

by cutting down the corresponding number of parameters. For problems solved in the

dual space, we form the approximate kernel matrix K̃ = K(A, Ã′)K(Ã, Ã′)−1K(Ã, A′)

to replace the full matrix K. For instance, a reduced set approach for the Lagrangian

SVM [28] has been implemented in [23]. To obtain the primal solution ṽ, we should

solve K(A, Ã′)ṽ = K̃v, where v is the dual solution.

Though we have discussed the statistical properties of the uniform random subset

approach mainly on the context of the reduced SVM, the use of a uniform random
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subset is not limited to the RSVM. The uniform random subset approach can act as a

supplemental-algorithm on top of a basic optimization algorithm, wherein the actual

optimization takes place on the subset-approximated data. The statistical properties

discussed above are still valid.

7 Conclusion

We study the RSVM from a robust design point of view and measure the discrepancy

between the full kernel and the uniform-random-subset generated Nyström approxi-

mation in order to provide a better understanding of the reduced kernel technique.

Our main results center on two major themes. One is on the robustness of the ran-

dom subset mixture model and the other is on the spectral analysis of the reduced

kernel. We show that uniformly and randomly selecting the reduced set of RSVM is

the optimal sampling strategy for recruiting kernel bases in the sense of minimizing a

model variation measure. We further provide two optimal properties for the RSVM,

namely, the minimaxity and maximinity. As for a practical view of the RSVM in

action, we have provided some spectral analysis. We compare the eigen-structures of

the full kernels and the approximation kernels on five real datasets. The approxima-

tion kernels are generated by uniform random subsets. The discrepancies such as the

differences between each pair of eigenvalues and eigenvectors, the relative difference

of the trace are very small. These results indicate that the uniform random subset

kernels can retain most of the relevant information for the learning tasks in the full

kernel. We have tested the RSVM on nine datasets and compared the results to the

conventional nonlinear SVM solved by the LIBSVM. Although in many cases the

RSVM has a slightly bigger training error, it does not scarify any predicting accuracy

on all test datasets. Furthermore, the reduced set size is smaller than the number of

support vectors in conventional SVM results. Thus, the RSVM uses a simpler model
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and is more economic in predicting new unlabeled data. This is an advantage in the

testing phase of learning tasks. The usage of uniform random subset is not limited to

the RSVM. The statistical properties discussed remain valid for other kernel-based

algorithms combined with a uniform random subset approximation.

8 Appendix

Lemma 1 For a given nonnegative function t(z), let Pt denote the collection of

probability density functions p(z) ∈ P, where P is as defined in (10), such that
∫
X (t(z)/p(z))dξT (z) < ∞. (Here 0/0 is defined to be zero.) Then the solution to the

following optimization problem

arg min
p∈Pt

∫

X
(t(z)/p(z))dξT (z)

is given by p(z) = c−1
√

t(z), where c =
∫
X

√
t(z) dξT (z).

Proof: Since
∫
X (t(z)/p(z))dξT (z) < ∞ and

∫
X p(z)dξT (z) = 1, by Hölder inequality,

we have

∫

X
(t(z)/p(z)) dξT (z) =

∫

X
(t(z)/p(z)) dξT (z) ·

∫

X
p(z)dξT (z) ≥

(∫

X

√
t(z)dξT (z)

)2

.

Equality holds if and only if, there exists some nonzero constant β such that

t(z)/p(z) = βp(z) a.e. with respect to ξT .

Since p(z) is a pdf, then equality holds if and only if p(z) = c−1
√

t(z). 2

In the rest of proofs, we let c2
0 = 1′K(A,A′)1 and ρ0 = 1′K̃ξT

1/c2
0 ≤ 1. Assume

that m̃ ¿ m, so that K − K̃ξT
is nonnegative definite and 0 ≤ ρ0 < 1.

Lemma 2 supf∈F−η B(f, ξT ) = η2.
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Proof: For f ∈ F−
η , we have B(f, ξT ) ≤ η2. The proof can be completed by finding

an f0 ∈ F−
η such that the above equality holds. Let f0(x) = v′0K(A, x) with v0 =

η1/(c0

√
1− ρ0 ). It is easily verified that v′0(K(A,A′) − K̃ξT

)v0 = η2. Here K̃ξT
=

∫
K(A, Ã′)K(Ã, Ã′)−1K(Ã, A′)dξT (Ã). 2

Lemma 3 inff∈F+
η
B(f, ξT ) = η2.

Proof: Similarly, for any f ∈ F+
η , we have B(f, ξT ) ≥ η2. Again by taking f0(x) =

v′0K(A, x) with v0 = η1/(c0

√
1− ρ0 ), we have v′0(K(A,A)− K̃ξT

)v0 = η2. 2

Proof for Theorems 2 and 3: We will show that

(1) infξ∈P supf∈F−η B(f, ξ) = supf∈F−η B(f, ξT ) and

(2) supξ∈P inff∈F+
η
B(f, ξ) = inff∈F+

η
B(f, ξT ).

(1) From Lemma 2 we have supf∈F−η B(f, ξT ) = η2. Part (1) can be shown by

finding an f0 ∈ F−
η such that B(f0, ξ) ≥ η2 for all ξ, i.e. finding an f0(x) = v′0K(A, x)

such that

v′0(K − K̃ξT
)v0 ≤ η2,

v′0(K − K̃ξ)v0 ≥ η2, ∀ξ.

For ξ 6= ξT , let ν = ξT − ξ, a signed measure. By Hahn decomposition theorem

there exists a measurable set E such that ν is positive on E and negative on Ec. Let

v∗0 = (v∗01, . . . , v
∗
0m)′ be given by

v∗0i =





1, if Ai ∈ E,

0, if Ai ∈ Ec.

Let v0 = ηv∗0/
√

v∗′0 (K − K̃ξT
)v∗0. Then B(f0, ξT ) = η2. Since ξ = ξT − ν and ν is

positive on E, we have v′0(K̃ξT
− K̃ξ)v0 = v′0K̃νv0 ≥ 0. Thus,

B(f0, ξ) = v′0(K − K̃ξ)v0 = v′0(K − K̃ξT
+ K̃ν)v0 ≥ B(f0, ξT ) = η2.
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(2) From Lemma 3 we have inff∈F+
η
B(v, ξT ) = η2. Part (2) can be shown by

finding an f0 ∈ F+
η such that B(f0, ξ) ≤ η2 for all ξ, i.e. finding an f0(x) = v′0K(A, x)

such that

v′0(K − K̃ξT
)v0 ≥ η2,

v′0(K − K̃ξ)v0 ≤ η2, ∀ξ.

Let ν, E and Ec be as defined above. Let v∗0 = (v∗01, . . . , v
∗
0m)′ be given by

v∗0i =





0, if Ai ∈ E,

1, if Ai ∈ Ec.

Let v0 = ηv∗0/
√

v∗′0 (K − K̃ξT
)v∗0. Then B(f0, ξT ) = η2. Since ξ = ξT − ν and ν is

negative on Ec, we have v′0(K̃ξT
− K̃ξ)v0 = v′0K̃νv0 ≤ 0. Thus,

B(f0, ξ) = v′0(K − K̃ξ)v0 = v′0(K − K̃ξT
+ K̃ν)v0 ≤ B(f0, ξT ) = η2.

The proof is completed. 2

Kernel boundary correction. The issue of making boundary kernels and do-

ing boundary correction in nonparametric estimation and prediction is a pretty subtle

problem and there is vast statistical literature. See, e.g., Gasser, Müller and Mam-

mitzsch [15] and references therein. Here we only provide some most basic ideas of

boundary kernels and boundary correction. Let B be the set of the so called bound-

ary points, which consist of points on and near the boundary. For simplicity consider

translation-type kernels that are probability density functions. Boundary kernels are

a collection of continuous varying kernels (with respect to z) {K(·, z)}z∈B satisfying
∫

K(x′, z)dx = 1. For instance, one simple way to make Gaussian boundary kernels

is to fold the part of kernel outside X by reflection and add it to the interior part.

Another way is simply to rescale kernels near the boundary and make them integrate

to one. To correct the boundary effects, one conceptually simple way is to replace

the ordinary kernels with boundary kernels for points z near the boundary.
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