Appendix: Proof of theorems

Proof of theorem 1. We prove the case where σ^2 is known. The extension of the proof to the case where σ^2 is estimated by $\hat{\sigma}^2$ is straightforward given the consistency of $\hat{\sigma}^2$. Let \hat{H}_{η} be the maximizer of the log conditional likelihood, defined in equation (5) in the main text as a function H with fixed η. We apply the Wald’s theorem (van der Vaart, 1998, Theorem 5.14) to prove that \hat{H}_{η} is consistent for $H_0(t)$ for every $\tau_1 < t < \tau_2$. By arguments similar to those in Huang (1996), we consider $F = \exp(\hat{H}_\eta)/(1 + \exp(\hat{H}_\eta))$ and $F_0 = \exp(\hat{H}_0)/(1 + \exp(\hat{H}_0))$. Write the conditional likelihood $L(\eta, H, \sigma^2)$ defined in (2) in the main text as $L(\eta, F, \sigma^2)$ and define

$$m(F)(Y) = \log \frac{L(\eta_0, F, \sigma_0^2)(Y)}{2L(\eta_0, F_0, \sigma_0^2)(Y)}.$$

Then $m(F)$ is uniformly bounded. Also, the map $F \mapsto m(F)(Y)$ is continuous at F, relative to the weak topology, for every $Y = (C, \Delta, Z, W)$ such that C is a continuous point of F. By assumption (A1) in Section 3.1, this includes almost every Y, for every given F. Let $\hat{F}_{\eta_0} = \exp(\hat{H}_{\eta_0})/(1 + \exp(\hat{H}_{\eta_0}))$. By the definition of \hat{H}_{η_0}, \hat{F}_{η_0} maximizes $P_n \log L(\eta_0, F, \sigma_0^2)$. Therefore

$$P_n m(\hat{F}_{\eta_0}) \geq P_n \left(\frac{1}{2} \log \frac{L(\eta_0, \hat{F}_{\eta_0}, \sigma_0^2)}{L(\eta_0, F_0, \sigma_0^2)} + \frac{1}{2} \log 1 \right) \geq 0 = P_n m(F_0).$$

On the other hand, by the concavity of the mapping $u \mapsto \log((u + 1)/2)$ and Jensen’s inequality, we have $P_0 m(F) \leq 0$, and the equality holds only if $F = F_0$ on (τ_1, τ_2). Therefore,
it follows directly from Theorem 5.14 of van der Vaart (1998) that \(\hat{F}_{\eta_0}(t) \stackrel{p}{\to} F_0(t) \) for every \(\tau_1 < t < \tau_2 \). By the continuous mapping theorem (van der Vaart, 1998, Theorem 18.11), we obtain \(\hat{H}_{\eta_0}(t) \stackrel{p}{\to} H_0(t) \) for every \(\tau_1 < t < \tau_2 \).

With the consistency of \(\hat{H}_{\eta_0} \), we now restrict \(\eta \) to \(N_{\eta_0} \), a neighborhood of \(\eta_0 \), and restrict \(H \) to \(H_0 = \{ H \in \mathcal{H} \mid -M \leq H(\tau_1) \leq H(\tau_2) \leq M \} \). Since the class of monotone and uniformly bounded functions is a Donsker class, by Theorem 2.10.6 of van der Vaart and Wellner (1996), we can show that the class \(\{ \ell_{\eta}((\eta, H, \sigma^2_0)) : (\eta, H) \in \mathcal{N}_{\eta_0} \times \mathcal{H}_0 \} \) is Donsker and hence Glivenko-Cantelli. By the fact that \(P_0 \ell_{\eta}(\zeta_0) = 0 \) and the consistency of \(\hat{H}_{\eta_0} \) shown above, it is easy to see that \(P_n \ell_{\eta}(\eta_0, \hat{H}_{\eta_0}, \sigma^2_0) = o_p(1) \). This together with assumption (A4) implies the existence of a consistent solution of \(\eta \) to the conditional score estimating equation \(0 = P_n \ell_{\eta}(\eta, \hat{H}_{\eta}, \sigma^2_0) \).

Proof of theorem 2. We shall claim that

\[
\|\hat{H}_{\eta} - H_0\|_Q = O_p(\|\eta - \eta_0\| + n^{-1/3})
\]

by verifying the conditions (3.5) and (3.6) in Theorem 3.2 of Murphy and van der Vaart (1999). Let the symbol \(\preceq \) mean smaller than, up to a constant. A Taylor series argument gives \(P_0 \{ \log L(\zeta_0) - \log L(\eta, H_0, \sigma^2_0) \} \preceq \|\eta - \eta_0\|^2 \), which, in conjunction with assumption (A3), can verify \(P_0 \{ \log L(\eta, H, \sigma^2_0) - \log L(\eta, H_0, \sigma^2_0) \} \preceq -\|H - H_0\|_Q^2 + \|\eta - \eta_0\|^2 \), the condition (3.5) of Murphy and van der Vaart (1999).

Let \(\Psi = \{ \log L(\eta, H, \sigma^2_0) : (\eta, H) \in \mathcal{N}_{\eta_0} \times \mathcal{H}_0 \} \). It is easy to see that the element in \(\Psi \) is uniformly bounded and satisfies \(P_0 \{ \log L(\eta, H, \sigma^2_0) - \log L(\eta, H_0, \sigma^2_0) \} \preceq \|\eta - \eta_0\|^2 + \|H - H_0\|_Q^2 \). Furthermore, we can check that the bracketing number \(N_{\eta_0}(\epsilon, \Psi, L_2(P)) \) (see van der Vaart, 1998, p. 412) is \(O(1/\epsilon) \), and hence the bracketing integral \(J(\delta, \Psi, L_2(P)) = \int_0^\delta \{ 1 + \log N_{\eta_0}(\epsilon, \Psi, L_2(P)) \}^{1/2} d\epsilon \) is \(O(\delta^{1/2}) \). It then follows from Lemma 3.3 of Murphy and van der Vaart (1999) that their condition (3.6) is satisfied for \(\phi_n(\delta) = \delta^{1/2} \). This completes the proof.

Proof theorem 3. Define

\[
\bar{\ell}(\zeta) = \ell_{\eta}(\zeta) - \ell_H(\zeta)[\bar{g}_0],
\]

where \(\bar{g}_0 = \bar{g}(\zeta_0) \). We first verify

\[
\sqrt{n} P_0 \bar{\ell}(\eta_0, \hat{H}, \sigma^2_0) = o_p(1), \quad (1)
\]
similar to the ‘no bias condition’ in Murphy and van der Vaart (2000). It is easy to see that
\[P_\zeta \hat{\ell}(\zeta) = 0. \]
Therefore
\[P_0 \hat{\ell}(\eta_0, H, \sigma_0^2) = (P_0 - P_0 H, \sigma_0^2) \{ \hat{\ell}(\eta_0, H, \sigma_0^2) - \hat{\ell}(\zeta_0) \} - P_0 H, \sigma_0^2 \hat{\ell}(\zeta_0). \]
(2)
Both the two terms on the right side of (2) are bounded by a multiple of \(\| H - H_0 \|_Q^2 \); the bound for the first term is obtained by using the mean value theorem twice, and the bound for the second term is obtained if we claim \(|E_0 H, \sigma_0^2 \{ \hat{\ell}(\zeta_0)|C, S(\eta_0, \sigma_0^2) \} | \leq (H - H_0)^2 (C) \).

Note that
\[\eta_0 P \]
leads to
\[\eta_0 P \]
which implies
\[\eta_0 P \]
and then
\[\eta_0 P \]
Hence the claim is obtained by first applying Taylor expansion for \(H(C) \rightleftharpoons L(\eta_0, H, \sigma_0^2) \) around \(H_0(C) \), i.e., \(|L(\eta_0, H, \sigma_0^2) - L(\zeta_0) - \ell_H(\zeta_0)[H - H_0]L(\zeta_0) | \leq (H - H_0)^2 (C) \), and then employing the fact that \(\hat{\ell}(\zeta_0) \) is the efficient conditional score \(\hat{\zeta}_0 \). Applying the rate of convergence on \(\hat{H} \) to (2), we have \(P_0 \hat{\ell}(\eta_0, H, \sigma_0^2) = O_P(\| \eta - \eta_0 \|_2^2 + n^{-2/3}) \), which implies (1).

It is known that the class of uniformly bounded functions of bounded variations is a Donsker class. Applying assumption (A5) and Theorem 2.10.6 of van der Vaart and Wellner (1996), it can be verified that \(\{ \hat{\ell}(\zeta) | \zeta \in \mathcal{N}(\eta_0, H_0, Q) \} \) and \(\{ \varphi(\sigma^2) | \sigma^2 \in Q \} \), where \(Q \) denotes the parameter space for \(\sigma^2 \), are uniformly bounded Donsker classes; the proof of which is technical and hence omitted here. Combining this with the consistency of \(\hat{\zeta} \equiv (\hat{\eta}, \hat{H}, \hat{\sigma}^2) \) leads to
\[\sqrt{n}(P_n - P_0) \left[\hat{\ell}(\zeta) - \hat{\ell}(\zeta_0) \right] = o_P(1). \]

Adding (1) to the first row of preceding display and using the facts that \(P_0 \hat{\ell}(\zeta_0) = P_0 \varphi(\sigma_0^2) = 0, P_n \hat{\ell}(\zeta) = P_n \varphi(\hat{\sigma}^2) = 0, \) and \(\hat{\ell}(\zeta_0) = \hat{\ell}(\eta_0) \), it is seen that
\[-\sqrt{n} P_0 \left[\hat{\ell}(\zeta) - \hat{\ell}(\eta_0, H, \sigma_0^2) \right] = \sqrt{n} P_n \left[\hat{\eta}_0 \right] + o_P(1). \]

By the mean value theorem, there exists \((\hat{\eta}, \hat{\sigma}^2) \) lying between \((\eta_0, \sigma_0^2) \) and \((\eta_0, \sigma_0^2) \) such that
\[-\sqrt{n} \left[P_0 \left[\frac{\partial}{\partial \eta} \hat{\ell}(\eta, H, \sigma^2) \begin{bmatrix} \hat{\eta} - \eta_0 \
\hat{\sigma}^2 - \sigma_0^2 \end{bmatrix} \right] - \sqrt{n} P_n \left[\hat{\eta}_0 \right] + o_P(1). \]
By the consistency of $\hat{\zeta}$, we have
\[
\sqrt{n} \left[\frac{\hat{\eta} - \eta_0}{\hat{\sigma}^2 - \sigma_0^2} \right] = \mathcal{I}_*^{-1} \sqrt{n} P_n \left[\tilde{\eta}_{0,0} \right] + o_P(1) \rightarrow N(0, \mathcal{I}_*^{-1} \mathcal{I}(\mathcal{I}_*^{-1})'),
\]
where $\mathcal{I} = P_0\{(\tilde{\eta}_{0,0}, \varphi_0)\}'(\tilde{\eta}_{0,0}, \varphi_0)\}$ and
\[
\mathcal{I}_* = P_0 \left[\begin{array}{cc}
-\frac{\partial}{\partial \eta} \tilde{\eta}(\zeta_0) & -\frac{\partial}{\partial \sigma^2} \tilde{\eta}(\zeta_0)
\end{array} \right] = P_0 \left[\begin{array}{cc}
-\frac{\partial}{\partial \eta} \tilde{\eta}(\zeta_0) & -\frac{\partial}{\partial \sigma^2} \tilde{\eta}(\zeta_0)
\end{array} \right].
\]

References

