中央研究院統計科學研究所

學術演講

講題: Asymptotic theory for time series analysis

演講人: Prof. Masanobu Taniguchi

Waseda University

- 時間:2025-02-24 (Mon.) 10:30-12:00
- 地點: Auditorium, B1F, Institute of Statistical Science; The tea reception will be held at 10:10.
- 備 註:Online live streaming through Cisco Webex will be available.

Abstract

This talk consists of the following two parts(i)&(ii).

(i)Hellinger Distance Estimation for Non-Regular Spectra

For Gaussian stationary process, we derive the time series Hellinger distance for spectra f and g: T(f, g). Evaluating T(f_ θ , f_ θ +h) of the form O(h[^] α), we elucidate the 1/ α -consistent asymptotics of the maximum likelihood estimator of θ for non-regular spectra. For regular spectra, we introduce the minimum Hellinger distance estimator $hat\{\theta\} = \arg \min \theta T(f_{\theta}, g^n)$, where g[^]n is a nonparametric spectral density estimator. We show that $hat\{\theta\}$ is asymptotically efficient, and more robust than the Whittle estimator. Small numerical studies will be provided.

(ii) The least squares estimator (LSE) seems a natural estimator of linear regression models.

Whereas, if the dimension of the vector of regression coefficients is greater than 1 and

the residuals are dependent, the best linear unbiased estimator (BLUE), which includes the $% \left(1-\frac{1}{2}\right) =0$

information of the covariance matrix $\boldsymbol{\Gamma}$ of residual process has a better performance than

LSE in the sense of mean square error. As we know the unbiased estimators are generally

inadmissible. In this talk, we propose a shrinkage estimator based on BLUE. Sufficient conditions for this shrinkage estimator to improve BLUE are also given. Furthermore, since Γ is infeasible, assuming that Γ has a form of $\Gamma = \Gamma(\boldsymbol{\theta})$, we introduce a feasible version of that shrinkage estimator with replacing $\Gamma(\boldsymbol{\theta})$ by $\Gamma(\hat{\boldsymbol{\theta}})$. Additionally, we give the sufficient conditions where the feasible version improves BLUE.

We also propose a shrinkage estimator based on BLUE. Sufficient conditions for this shrinkage estimator to improve BLUE are also given. Furthermore, since Γ is infeasible, assuming that Γ has a form of $\Gamma = \Gamma(\boldsymbol{\theta})$, we introduce a feasible version of that shrinkage estimator with replacing $\Gamma(\boldsymbol{\theta})$ by $\Gamma(\hat{\boldsymbol{\theta}})$. Additionally, we give the sufficient conditions where the feasible version improves BLUE.

Joint work with Yujie Xue(Waseda University)

中 央 研 究 院 統計科學研究所