Landmark Alternating Diffusion: Efficient Sensor Fusion Through Landmark Diffusion
- 2025-05-19 (Mon.), 10:30 AM
- 統計所B1演講廳;茶 會:上午10:10。
- 實體與線上視訊同步進行。
- Prof. Mao-Pei Tsui (崔茂培 教授)
- 台灣大學數學系
Abstract
Alternating Diffusion (AD) is a powerful sensor fusion algorithm but suffers from computational limitations. We introduce Landmark Alternating Diffusion (LAD), an efficient alternative inspired by landmark diffusion. LAD uses a landmark set to streamline the fusion process, achieving superior computational efficiency compared to AD. We theoretically analyze LAD and demonstrate its application to automatic sleep stage annotation using EEG data, showing comparable performance with significantly reduced computation time. This is joint work with Xing-Yuan Yeh, Hau-Tieng Wu, and Ronen Talmon.
最後更新日期:2025-04-28 09:48