jump to main area
:::
A- A A+

Seminars

Data-driven multistratum designs with the generalized Bayesian D-D criterion for highly uncertain models

  • 2020-03-16 (Mon.), 10:30 AM
  • R6005, Research Center for Environmental Changes Building
  • Prof. Chang-Yun Lin
  • Department of Applied Mathematics and Institute of Statistics, National Chung Hsing University

Abstract

Multistratum designs have gained much attention recently. Most criteria, such as the D criterion, select multistratum designs based on a given model that is assumed to be true by the experimenters. However, when the true model is highly uncertain, the model used for selecting the optimal design can be seriously misspecified. If this is the case, then the selected multistratum design will be not efficient for fitting the true model. To deal with the problem of high uncertain models, we propose the generalized Bayesian D-D (GBDD) criterion, which selects multistratum designs based on the experimental data. Under the framework of multistratum structures, we develop theorems and formula that are used for conducting Bayesian analysis and extracting information about the true model from the data to reduce model uncertainty. The GBDD criterion is easy and flexible in use. We provide several examples to demonstrate how to construct the GBDD-optimal split-plot, strip-plot, and staggered-level designs. By comparing with the D-optimal designs and one-stage generalized Bayesian D-optimal designs, we show that the GBDD-optimal designs have higher efficiency on fitting the true models. The extensions of the GBDD criterion for more complicated cases, such as more than two stages of experiments and more than one class of potential terms, are also developed. ? KEY WORDS: Bayesian D criterion, D criterion, split-plot design, staggered-level design, strip-plot design, two-stage experiment.

Update:2024-12-03 20:13
scroll to top