Adversarial Classification
- 2025-04-21 (Mon.), 10:30 AM
- Auditorium, B1F, Institute of Statistical Science;The tea reception will be held at 10:10.
- Online live streaming through Cisco Webex will be available.
- Prof. Fabrizio Ruggeri
- Institute for Applied Mathematics and Information Technologies, National Research Council of Italy, Italy
Abstract
In multiple domains such as malware detection, automated driving systems, or fraud detection, classification algorithms are susceptible to being attacked by malicious agents willing to perturb the value of instance covariates in search of certain goals. Such problems pertain to the field of adversarial machine learning and have been mainly dealt with, perhaps implicitly, through game-theoretic ideas with strong underlying common knowledge assumptions. These are not realistic in numerous application domains in relation to security. We present an alternative statistical framework that accounts for the lack of knowledge about the attacker’s behavior using adversarial risk analysis concepts.
Please click here for participating the talk online.