jump to main area
:::
A- A A+

Seminars

Uncertainty of Network Topology with Applications to Out-of-Distribution Detection

  • 2025-08-18 (Mon.), 10:30 AM
  • Auditorium, B1F, Institute of Statistical Science;The tea reception will be held at 10:10.
  • Online live streaming through Microsoft Teams will be available.
  • Prof. Chun-Hao Yang
  • Institute of Statistics and Data Science, National Taiwan University

Abstract

Persistent homology (PH) is a crucial concept in computational topology, providing a multiscale topological description of a space. It is particularly significant in topological data analysis, which aims to make statistical inference from a topological perspective. In
 his work, we introduce a new topological summary for Bayesian neural networks, termed the predictive topological uncertainty (pTU). The proposed pTU measures the uncertainty in the interaction between the model and the inputs. It provides insights from the model perspective: if two samples interact with a model in a similar way, then they are considered identically distributed. We also show that the pTU is insensitive to the model architecture. As an application, pTU is used to solve the out-of-distribution (OOD) detection problem, which is critical to ensure model reliability. Failure to detect OOD input can lead to incorrect and unreliable predictions. To address this issue, we propose a significance test for OOD based on the pTU, providing a statistical framework for this issue. The effectiveness of the framework is validated through various experiments, in terms of its statistical power, sensitivity, and robustness.

Update:2025-07-21 12:23
scroll to top